Introduction

E-mail address: Clamart, France
F. Genet d, E. Lapeyre a
improvement of the parameters of the analysis of walking and the concomitant
At M6, the data of gait and fMRI show the acquisition of learning to walk by the
telecoping areas.
substantially identical to the healthy subjects, without reorganization or
plasticity and late acquisition of gait from a patient
functional MRI of the amputee. A case of brain
Coupled analysis of the kinetic data of gait and
http://dx.doi.org/10.1016/j.rehab.2013.07.187

Posters

English version

P031-e
Coupled analysis of the kinetic data of gait and functional MRI of the amputee. A case of brain plasticity and late acquisition of gait from a patient with congenital lower limbs atrophy
M. Thomas-Pohl a,*, D. Rogez a, F. Gelbert b, C. Nioche b, H. Pillet c, F. Genet d, E. Lapeyre e
a Hôpital d’Instruction des Armées Percy, 101, avenue Henri-Barbusse, 92140 Clamart, France
b Hôpital d’Instruction des Armées, Val de Grace, France
c École Nationale des arts et métiers, Paris, France
d Hôpital Raymond-Poincaré, Garches, France
e*Corresponding author.
E-mail address: thomas_marie@hotmail.com

Keywords: Congenital lower limb atrophy; Functional MRI; Brain plasticity

Introduction.– In France, 7800 new cases of amputation have been identified in 2005, with a small proportion of congenital amputations. Most of the patients reach adulthood either having been taken care in rehabilitation or using prosthesis. Mapping in functional MRI (fMRI) of an adult who never walked has, to our knowledge, never been studied in the literature.

Objectives.– Describe the modifications of the cortical representation with fMRI during the gait learning with prostheses of a patient with congenital lower limb atrophy and correlate these modifications with kinetic and kinematic parameters of gait analysis.

Patient.– A 17-year-old girl, with congenital lower limbs atrophy, who underwent a double distal transfemoral amputation, moving inside on her two stumps or with a manual wheelchair.

Materials and methods.– fMRI (active contraction, nociceptive stimulation and mental imagery) and gait analysis before prosthesis (M0) and 6 months after (M6).

Results.– All motor sequences of the initial fMRI present an activation of contralateral central regions and supplementary motor area (SMA). Mental imagery activates those same areas, with a more intense activation in the SMA and an additional activation of the parietal, left frontal and left temporal cortex. Somatosensory stimulation activates the post-central region.

At 6 months, fMRI mapping is identical as at M0 with a slightly more intense and extensive activation of motor areas and an additional activation of frontal and prefrontal cortex. Kinetic and kinematic parameters of gait were improved between M0 and M6.

Discussion.– For traumatic amputees [1], the representation of the lost limb is still part of the body schema, with a incomplete reorganization and an expansion of the contiguous zone. For the agenesisics as for our patient, the activation is still part of the body schema, with a incomplete reorganization and an expansion of the contiguous zone. For the agenesisics as for our patient, the activation is substantially identical to the healthy subjects, without reorganization or telescoping areas.

At M6, the data of gait and fMRI show the acquisition of learning to walk by the improvement of the parameters of the analysis of walking and the concomitant activation of frontal and prefrontal areas.

Reference
http://dx.doi.org/10.1016/j.rehab.2013.07.188

P032-e
Hunting prosthesis for a upper limb amputation
B. Guerin a,*, A. Jouvion, Mme G. De Brier, T. Trappier, L. Thefenne
Hôpital d’Instruction des Armées Laveran, boulevard Laveran, 13013 Marseille, France
*Corresponding author.
E-mail address: beneguerin@yahoo.fr

Keywords: Prosthesis; Upper-limb amputees; Hunting

Introduction.– We report an original prosthetisation. It depends on the wishes of upper limb amputation patients.

Case report.– Mrs J is a 67-year-old woman. She is right-handed, retired farmer. She loves hunting, walking and cycling. In December 5, 2010, she had a hunting accident. She is amputated at the upper quarter of the left humerus. At first, an esthetique prosthesis is made. It is suspended from a chest strap. It is finalized in March 2011. In May 2012, a myoelectric prosthesis was performed. After a learning phase, it is used in the daily activities (cooking, ironing, gardening). Now, she hopes to resume hunting and therefore be able to adapt the prosthesis accordingly.

Discussion.– We present the results of the development of the prosthesis through specifications laid down. Constraints are multiple related to amputation, related to hardware, related to hunting. Each constraint had to be taken into account to obtain the expected result.

Conclusion.– The upper limb prosthesis is designed to meet the aesthetic and functional aspect of the amputated limb. Sometimes she has a specific function to allow the resumption of a professional activity or leisure.
http://dx.doi.org/10.1016/j.rehab.2013.07.189

P033-e
Prosthesis and surgery in purpura fulminans sequela
M. Fahmy, F. Clavier a,*, M. Fiat, D. Pilliard, G. Penneçot
Hopitaux de Saint-Maurice, 14, rue du Val-d’Osté, 94410 Saint-Maurice, France
*Corresponding author.
E-mail address: cerefan@hopitaux-st-maurice.fr

Keywords: Purpura fulminans; Growth; Amputation; Prothesis

Since the progress of medical resuscitation, the number of children having had a purpura fulminans with amputations of members has increased. We followed 15 children with a severe involvement of the limbs. This involvement is stereotyped enough, for lower limbs, amputations are almost done in middle of tibia both sides and present difficult problems for prosthesis.

We present you the case of Adrien, 18-year-old, followed in the department for 15 years for the after effects of purpura arisen at the age of 5 months. Because of this purpura, he presented an amputation of the left forearm and hand, of the middle of right tibia and septic arthritis of the left ankle. The first equipment was made at the age of 11 months. For the right lower limb, a prosthesis with ischiatiqute support and for the left one, an articulated orthosis.

During the first years we noticed the existence of severe injuries of the growth plates leading to predict a very reduced final height. More over asymmetric hurts of the lower tibial growth plate ended a varus deviation having required a surgical correction on two occasions. At the age of 13, our fears about his fine size were proved exact, Adrien wished to have a size more tall. To do so, we decided to perform femoral prosthesis both sides.

To facilitate this equipment, it was necessary to realize a partial amputation of the left foot. The articular state of the knees was very damaged, the prosthesis in femoral allowed to avoid their too important request.
Adrien carries now his prosthesis longer he has retied social links. Purpura gives not only hurts of ischemia requiring amputations in the acute phase of the disease, but also involvement of the growth plates, more or less important but sometimes up to a complete sterilization of the whole growth plate. This raises the later problem after the acute phase of axis deviation and disparity of limbs length. So, the frequency of the involvement of the growth plate must no be underestimated. Children require multidisciplinary consultations bringing in the occupational therapists, the physiotherapists, and the doctors of physical medicine, orthopedic surgeons.

http://dx.doi.org/10.1016/j.rehab.2013.07.190

P034-e

In vivo measurement of compression bandage interface pressures: Evaluation of different bandages, application methods and positions

D. Rimaud a,⁎, P. Calmels b, M.R. Convent b

⁎ CHU Saint-Étienne, service de médecine physique et de réadaptation, 42055 Saint-Étienne cedex 02, France

b Thuasne, BP243, 92037 Levallois-Perret cedex, France

⁎Corresponding author.

E-mail address: diana.rimaud@chu-st-etienne.fr

Keywords: Interface pressure; Compression bandages; Compression stockings; Application method; Reproducibility

Background.—A compression bandage has precise technical characteristics (structure, stretch, tension). But no standard exists for calculating the in vitro pressure exerted by a bandage. In addition, the in vivo pressures exerted on the skin by a compression bandage are still little understood.

Objective.—To perform in vivo measurement of the pressure of different compression bandages with different technical characteristics (elastic and non-elastic) and using different application methods and subject positions.

Methods.—The pressures were measured on the right legs of 20 healthy females at three different points on the leg (B1, C and F) using six types of compression devices (stockings, non-elastic bandage, elastic bandages with two different technical characteristics and three different application methods), and in three positions (supine, sitting, standing).

Results.—All the elastic compression bandages respect the principle of graduated pressure along the length of the limb (P < 0.0001), but not for non-elastic bandage whose pressure did not differ between B1 and C (−22% and −46% for Biflex® elastic bandages vs −1% and −39% for the non-elastic band, respectively at C and F relative to B1).

Conclusions.—The pressures of all the bandages increase significantly (P < 0.0001) between the supine position and the sitting or standing position, especially with the non-elastic compression bandage (+4 mmHg and +5 mmHg for Biflex® elastic bandages using the spiral technique vs +8 mmHg and +12 mmHg for non-elastic bandage, respectively in B1 and C).

There is a marked variation in pressures between subjects for the non-elastic bandage (16% and 18% for the non-elastic bandage vs 8% and 12% for Biflex® elastic bandages using the spiral technique, respectively in B1 and C).

The pressure increases significantly with the number of bandage overlaps, along with the tension of the bandage on application (P < 0.01).

Conclusions.—The pressure exerted depends on the application method and the technical characteristics of the bandage. The elastic and non-elastic bandages behave differently from one another, with the non-elastic bandages not appearing to comply with the medical recommendations concerning graduated pressure. In addition, there is a high level of variability between subjects for some compression bandages (non-elastic and elastic applied using the spica method). However, the reproducibility of application to the same subject is good when the tester is well qualified.

http://dx.doi.org/10.1016/j.rehab.2013.07.191

P035-e

Mycetoma or Madura foot: A case report

E.H. Kassimi a,⁎, A. Khadir a, M. Elbouchikhi a, F. Lmidmani a, A. Elfatimi a, H. Elhyaoui b, A. Messoudi b, J. Hassoun b, A. Garch b

⁎ Service de médecine physique et de réadaptation fonctionnelle, hôpital Ibn Roch, CHU Ibn Rochd, 1, quartier des Hôpitaux, 20100 Casablanca, Maroc

⁎ Service de traumatologie et chirurgie orthopédique (p32), hôpital Ibn Roch CHU Ibn Rochd, 20100 Casablanca, Morocco

⁎Corresponding author.

E-mail address: kassimi24@hotmail.com

Keywords: Mycetoma; Madura foot; Diagnosis; Treatment; Amputation

Introduction.—Mycetoma or Madura foot is a chronic skin infection due to bacterial or fungal pathogens. It is endemic in tropical countries, but rare in temperate climates. It is known by its elective podal location. Untreated, the disease progresses to destruction of soft tissue and adjacent bone structures with deformation of the limb.

The nature of this condition is illustrated by reference to a recent observation in our service and a brief discussion of some important diagnostic and therapeutic. Observation.—It is a 23-years-old man, consulted for a painful foot, with the presence of nodules progressing for 5 years, occurred in the aftermath of an injury to the left foot arch. Radiography of the foot shows an anterior tarsal and mediotalar osteolysis. Bone biopsy reveals the presence of Madurella mycetomatis, covered by a radical surgical treatment type of amputation of the leg. A tibial prosthesis was performed with recovery of independence of the march.

Discussion.—These are inflammatory pseudo-tumors with multiple fistulas of slow evolution containing fungal grains or actinomycotic of exogenous origin.

They grow in soft tissues under the skin and can reach the bone, making the gravity. Diagnosis of mycetoma should be considered in chronic skin swelling, painless, fistulas, draining grains. Modern imaging, although non-specific, can guide the diagnosis and assess the extension. The treatment is medical and surgical. The recurrence rate remains high (50%).

Conclusion.—Mycetoma should be thought about in differential diagnoses in a chronically swollen and painful foot to avoid, as shown in our case report, a delayed diagnosis leading to functional and esthetical impairments

Further reading


http://dx.doi.org/10.1016/j.rehab.2013.07.192

P036-e

The effects of different sudden ankle inversion degrees on ankle brace efficacy

J. Vallat ⁎, P. Calmels, D. Rimaud

⁎ CHU de Saint-Étienne, service de médecine physique et de réadaptation, hôpital Bellevue, 42055 Saint-Étienne Cedex 02, Saint-Étienne, France

⁎Corresponding author.

E-mail address: vallat.jeremy@gmail.com

Keywords: Ankle brace; Ankle inversion; Tilting platform; Ankle sprain

Objective.—This study was designed to test different inversion angles during a sudden induced inversion movement with brace or no-brace conditions.

Methods.—Twelve healthy subjects, without any recent ankle injuries participated in this study. A custom-built tilting platform was made and induced to the ankle an inversion movement looked like a real injury movement. Two conditions were measured barefoot: brace and no-brace conditions. The calcaneal inversion angle was measured by video at three different angles of tilt (18.9°, 25° and 29.8°) induced by the tilting platform

Results/discussion.—The tested ankle brace reduced significantly the calcaneal inversion angle compared to the no-brace condition. For the no-brace condition, the increase of tilting platform angle induced a significant increase of calcaneal inversion angle.

When subjects wore braces, it seems to be less sensitive to angle effect until 25°, then it seems to increase over that value. Finally, the decrease of mobility or percentage reduction depended on the angle of tilt from tilting platform.

Conclusion.—This experimental study including the tilting platform enables to test the restriction of inversion motion induced by the brace. Significant differences between brace and no-brace conditions at different angles were

http://dx.doi.org/10.1016/j.rehab.2013.07.191