Article

8 Iconography
Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    13 8 0 0


Comptes Rendus Physique
Volume 16, n° 3
pages 303-315 (avril 2015)
Doi : 10.1016/j.crhy.2015.03.006
Coarsening in fluid phase transitions
Coarsening dans les transitions en phase fluide
 

Subir K. Das a, , Sutapa Roy a, b, c, Jiarul Midya a
a Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India 
b Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany 
c Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany 

Corresponding author.
Abstract

We review the understanding of the kinetics of fluid phase separation in various space dimensions. Morphological differences, percolating or disconnected domains, based on overall composition in a binary liquid or on density in a vapor–liquid system, are discussed. Depending upon the morphology, various possible mechanisms for domain growth are pointed out and discussions of corresponding theoretical predictions are provided. On the computational front, useful models and simulation methodologies are presented. Theoretically predicted growth laws have been tested via molecular dynamics simulations of vapor–liquid transitions. In the case of a disconnected structure, the mechanism has been confirmed directly.

The full text of this article is available in PDF format.
Résumé

Nous passons en revue la compréhension de la cinétique de séparation de phases fluides dans diverses dimensions d'espace. Les différences morphologiques, les domaines de percolation ou déconnectés, basés sur la composition totale binaire ou sur la densité dans un système vapeur–liquide, sont discutés. Selon la morphologie, les différents mécanismes possibles sont présentés et les prédictions théoriques correspondantes discutées. Du côté du calcul par ordinateur, des modèles utiles et des méthodes de simulation sont présentées. Des lois de croissance prédites théoriquement ont été testées au moyen de simulations de dynamique moléculaire des transitions vapeur–liquide. Dans le cas d'une structure déconnectée, le mécanisme a été confirmé directement.

The full text of this article is available in PDF format.

Keywords : Phase transition, Coarsening, Hydrodynamics, Molecular dynamics




© 2015  Académie des sciences@@#104156@@© 2013  AIP Publishing LLC. Published by Elsevier Masson SAS de la part de Académie des sciences@@#104157@@© 2013  AIP Publishing LLC. Published by Elsevier Masson SAS de la part de Académie des sciences@@#104157@@© 2013  AIP Publishing LLC. Published by Elsevier Masson SAS de la part de Académie des sciences@@#104157@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline