Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    12 0 0 0


Comptes Rendus Physique
Volume 8, n° 5-6
pages 684-695 (juin 2007)
Doi : 10.1016/j.crhy.2007.05.019
Received : 4 May 2007 ; 
Dynamics of fluctuations in non-Markovian systems
Dynamique de fluctuations dans les systèmes non-markoviens
 

Daniel Alonso a, , Inés de Vega b, Ethel Hernández-Concepción c
a Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, Facultad de Físicas, Universidad de La Laguna, La Laguna 38203, Tenerife, Spain 
b Max-Planck Institut für Quantenoptik, Hans-Kopfermann-Str. 1, Garching, 85748, Germany 
c Departamento de Física Fundamental II, Facultad de Físicas, Universidad de La Laguna, La Laguna 38203, Tenerife, Spain 

Corresponding author.
Abstract

The dynamics of multiple time correlation functions (MTCFs) of a system in contact with a non-Markovian environment is relevant in many different contexts. In this article we study the dynamical equations that satisfy MTCFs of a system and how they are used to characterize its fluctuations. The non-Markovian character of the interaction between the system and its environment leads to dynamical equations different from those derived from the Quantum Regression Theorem. We further discuss an stochastic method to compute MTCFs. To illustrate the theory we apply it to the evaluation of the emission spectrum of an atom in contact with a non-Markovian environment. The emission spectrum strongly depends on the way the environment reacts to the absorption of a photon emitted by the atom. To cite this article: D. Alonso et al., C. R. Physique 8 (2007).

The full text of this article is available in PDF format.
Résumé

La dynamique des fonctions de correlation à temps multiples (FCTM) dʼun système en contact avec un environnement non-markovien est importante dans de nombreux contextes différents. Dans cet article, nous étudions les équations dynamiques satisfaites par les FCTM dʼun système et nous montrons comment elles peuvent être utilisées pour caractériser ses fluctuations. Le caractère non-markovien de lʼinteraction entre le système et son environnement mène à des équations dynamiques différentes de celles dérivées à partir du théorème de regression quantique. Nous discutons de plus une méthode stochastique pour calculer les FCTM. Pour illustrer la théorie, nous lʼappliquons à lʼévaluation du spectre dʼémission dʼun atome en contact avec un environnement non-markovien. Le spectre dʼémission dépend fortement de la manière dont lʼenvironnement réagit à lʼabsorption dʼun photon émis par lʼatome. Pour citer cet article : D. Alonso et al., C. R. Physique 8 (2007).

The full text of this article is available in PDF format.

Keywords : Open quantum systems, Non-Markovian, Fluctuations

Mots-clés : Systèmes quantiques ouverts, Non-markovien, Fluctuations




© 2007  Published by Elsevier Masson SAS de la part de Académie des sciences.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@