Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    20 0 0 0

Comptes Rendus Physique
Volume 6, n° 4-5
pages 467-486 (mai-juin 2005)
Doi : 10.1016/j.crhy.2005.05.001
Vortex methods and their application to trailing wake vortex simulations
Les méthodes vortex et leur application à la simulation des sillages tourbillonnaires

Grégoire Winckelmans , Roger Cocle, Louis Dufresne, Raphaël Capart
Université catholique de Louvain (UCL), Mechanical Engineering Department, Division TERM and Center for Systems Engineering and Applied Mechanics (CESAME), 1348 Louvain-la-Neuve, Belgium 

Corresponding author.

Vortex methods are competitive for simulating incompressible unsteady flows, because they have negligible dispersion error and good energy conservation. The various methods are presented, including the recent developments: particle redistribution, diffusion, relaxation (by projection), efficient solvers (fast multipole method, vortex-in-cell method, hybrid method) and parallel computer implementations. Examples relating to wing/aircraft trailing wake vortices are presented: 2-D and 3-D, inviscid and viscous, direct numerical simulation and large eddy simulation. We consider wake roll-ups, vortex tube dynamics, 3-D instabilities and the complexity/turbulence they produce. A vortex system in ground effects is also presented. To cite this article: G. Winckelmans et al., C. R. Physique 6 (2005).

The full text of this article is available in PDF format.

Les méthodes vortex sont compétitives pour la simulation dʼécoulements incompressibles et instationnaires, car elles ont peu de dispersion et de bonnes propriétés de conservation de lʼénergie. Les diverses méthodes sont présentées, incluant les développements récents : redistribution des particules, diffusion, relaxation (par projection), solveurs efficaces (méthode multipole rapide, méthode particules-grille, méthode hybride) et implémentation sur ordinateurs parallèles. Des examples sont présentés concernant lʼapplication aux sillages tourbillonnaires dʼailes/avions : 2-D et 3-D, non-visqueux et visqueux, simulation directe et simulation des grandes échelles. On considère des enroulements, de la dynamique de tubes tourbillon, des instabilités 3-D et la complexité/turbulence quʼelles produisent. Un système de tourbillons en effet de sol est aussi présenté. Pour citer cet article : G. Winckelmans et al., C. R. Physique 6 (2005).

The full text of this article is available in PDF format.

Keywords : Lagrangian methods, Vortex particle methods, Vortex-in-cell methods, Unsteady flows, Turbulent flows, Direct numerical simulation, Large-eddy simulation

Mots-clés : Méthodes lagrangiennes, Méthodes de particules tourbillon, Méthodes particules-grille, Écoulements instationnaires, Écoulements turbulents, Simulation numérique directe, Simulation des grandes échelles

© 2005  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline