Article

10 Iconography
Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    13 10 0 0


Comptes Rendus Physique
Volume 17, n° 10
pages 1096-1108 (décembre 2016)
Doi : 10.1016/j.crhy.2016.08.002
Experiments on the thermoelectric properties of quantum dots
Expériences sur les propriétés thermoélectriques des boîtes quantiques
 

Artis Svilans , Martin Leijnse, Heiner Linke
 NanoLund and Solid State Physics, Lund University, Box 118, 221 00 Lund, Sweden 

Corresponding author.
Abstract

Quantum dots (QDs) are good model systems for fundamental studies of mesoscopic transport phenomena using thermoelectric effects because of their small size, electrostatically tunable properties and thermoelectric response characteristics that are very sensitive to small thermal biases. Here we provide a review of experimental studies on thermoelectric properties of single QDs realized in two-dimensional electron gases, single-walled carbon nanotubes and semiconductor nanowires. A key requirement for such experiments is to have some methods for nanoscale thermal biasing at one's disposal. We briefly review the main techniques used in the field, namely, heating of the QD contacts, side heating and top heating, and touch upon their relative advantages. The thermoelectric response of a QD as a function of gate potential has a characteristic oscillatory behavior with the same period as is observed for conductance peaks. Much of the existing literature focuses on the agreement between experiments and theory, particularly for amplitude and line-shape of the thermovoltage  . A general observation is that the widely used single-electron tunneling approximation for QDs has limited success in reproducing measured  . Landauer-type calculations are often found to describe measurement results better, despite the large electron–electron interactions in QDs. More recently, nonlinear thermoelectric effects have moved into the focus of attention, and we offer a brief overview of the experiments done so far. We conclude by discussing open questions and avenues for future work, including the role of asymmetries in tunnel- and capacitive couplings in the thermoelectric behavior of QDs.

The full text of this article is available in PDF format.
Résumé

Les boîtes quantiques (BQ) sont de bons systèmes pour mener des études fondamentales sur les phénomènes mésoscopiques de transport thermoélectrique, du fait de leurs petites tailles, de leurs propriétés réglables électrostatiquement et de leurs réponses thermoélectriques, qui sont très sensibles à de petits gradients thermiques. Nous passons en revue ici des études expérimentales des propriétés thermoélectriques de BQ individuelles crées dans des gaz d'électrons bidimensionnels, des nanotubes de carbone mono-feuillet et des nanofils semi-conducteurs. Une condition cruciale pour de telles expériences est de disposer de méthodes pour imposer des gradients thermiques aux échelles nanométriques. Nous rappelons brièvement les techniques principales utilisées dans ce but – chauffage Joule des contacts de la boîte, chauffage sur les côtés et par le dessus –, et nous en discutons les avantages respectifs. La réponse thermoélectrique d'une BQ en fonction d'un potentiel de grille présente des oscillations de période identique à celle observée pour les pics de conductance. Une grande part de la litterature insiste sur l'accord entre l'expérience et la théorie, notamment en ce qui concerne l'amplitude et la largeur des pics du thermovoltage  . Une observation générale est que l'approximation largement utilisée de l'effet tunnel à un électron décrit avec un succès limité la mesure de  . Les calculs à la Landauer s'avèrent souvent mieux décrire les mesures, en dépit des grandes interactions électron–électron à l'œuvre dans ces BQ. Plus récemment, les effets thermoélectriques non linéaires ont attiré l'attention, et nous présentons un bref résumé des expériences menées à bien à ce jour. Nous concluons par une discussion des questions ouvertes et des perspectives pour des travaux futurs, incluant les rôle des asymétries dans les couplages à effet tunnel et capacitifs pour le comportement thermoélectrique des BQ.

The full text of this article is available in PDF format.

Keywords : Quantum dot, Thermopower, Thermoelectric, Nanoscale, Thermal bias




© 2016  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline